کد الگوریتم PSO در پایتون Python

در این پست سورس کد الگوریتم PSO در پایتون Python قرار گرفته شده است. این سورس کد به زبان پایتون Python برای الگوریتم ازدحام ذرات یا همان PSO نوشته شده است. این سورس کد بر اساس 12 توابع تست الگوریتم PSO را اجرا می کند. برای اینکه بتوانید مسئله الگوریتم PSO را واضح و کامل درک کنید مقاله ای کامل با عنوان الگوریتم PSO در همین سایت نوشته شده است. در ادامه مختصری از الگوریتم برای درک کد الگوریتم ازدحام ذرات در پایتون بیان می شود.

الگوریتم PSO

الگوریتم PSO یا (Particle swarm optimization) بهینه سازی ازدحام ذرات (PSO) یک روش بهینه سازی تصادفی مبتنی بر جمعیت است که الهام گرفته از رفتار اجتماعی ازدحام پرندگان و پرورش ماهی است. این الگوریتم با جمع آوری راه حل های تصادفی و جستجو برای بهینه سازی با به روز رسانی نسل ها آغاز می شود. همانطور که قبلا اشاره شد، الگوریتم PSO رفتارهای ازدحام پرنده را شبیه سازی می کند. تصور کنید سناریوی زیر: گروهی از پرندگان به طور تصادفی در یک منطقه در معرض غذا قرار می گیرند. در منطقه مورد جستجو تنها یک قطعه غذا وجود دارد. همه پرندگان نمی دانند کجا غذا است. اما آنها می دانند که چقدر مواد غذایی در هر تکرار است. بنابراین بهترین استراتژی برای یافتن غذا چیست؟ راه حل این است که دنبال پرنده ای که نزدیکتر به غذا است را دنبال کنید.

طراحان PSO از این سناریو اقتباس کردند و از آن برای حل مشکلات بهینه سازی استفاده کردند. در PSO، هر یک از راه حل یک “پرنده” در فضای جستجو است. ما آن را “ذره” می نامیم. تمام ذرات دارای مقادیر تناسب هستند که توسط تابع تناسب برای بهینه سازی ارزیابی می شوند و دارای سرعت هایی هستند که پرواز ذرات را هدایت می کنند. ذرات از طریق فضای مشکل با ذرات بهینه مطلوب جریان می یابند.

نحوه عملکرد

الگوریتم PSO با گروهی از ذرات تصادفی (راه حل) آغاز می شود و سپس با به روز رسانی نسل ها جستجو می کند. در هر تکرار، هر ذره با دو ارزش “بهترین” به روزرسانی می شود. اولین مورد بهترین راه حل ( تابع تناسب ) است که تاکنون به دست آورده است. (ارزش تناسب نیز ذخیره می شود.) این ارزش pbest نامیده می شود. یکی دیگر از “بهترین ها” ارزشی است که تا کنون توسط هر ذره در جمعیت به دست آمده است. این بهترین ارزش جهانی بهترین است و به نام gbest است. هنگامی که یک ذره بخشی از جمعیت را به عنوان همسایگان توپولوژیکی خود می گیرد، بهترین ارزش بهترین محلی است و به نام lbest نامیده می شود.

پس از پیدا کردن بهترین مقادیر pbest و gbest  ذره سرعت و موقعیت خود را با معادله زیر (1) و (2) به روز می کند.

v[] = v[] + c1 * rand() * (pbest[] – present[]) + c2 * rand() * (gbest[] – present[]) (1)
present[] = persent[] + v[] (2)

که در آن v سرعت ذرات است، present ذره فعلی (راه حل) است. pbest و gbest قبلا تعریف شده اند. rand یک عدد تصادفی بین (0،1) است. C1، C2 عامل یادگیری هستند. معمولا c1 = c2 = 2 هستند.

قسمت هایی از سورس کد

 


***  توجه  ***

قبل از اجرای سورس کد الگوریتم در محیط پایتون حتماً از نصب پکیج های مورد استفاده در این سورس کد در Python خود مطمئن شوید پکیج های استفاده شده در این سورس کد numpy و  matplotlib می باشد که اولی پکیج مربوط به استفاده از آرایه ها و ماتریس ها در پایتون و دومی مربوط به عملیات های نموداری و Plot گرفتن می باشد. پیشنهاد ما نصب Anaconda  می باشد که هم پایتون و پکیج های مختلف و هم IDE های مختلفی را همراه با امکان آپدیتشان نصب می کند. ما این سورس کد را با IDE اسپایدر (Spyder (Python 3.7 نوشته و اجرا کرده ایم.


درباره محصول

سورس کد الگوریتم PSO در پایتون Python عنوان محصولی است که در این پست به آن پرداخته شده است. محصول در پایتون و با IDE اسپایدر (Spyder (Python 3.7 نوشته شده و بصورت کامل توسط گروه پشتیبانی پی استور تست و اجرا شده است. محصول دارای نشان تضمین کیفیت پی استور می باشد. برای دانلود محصول آن را خریداری کنید.

1 دیدگاه برای کد الگوریتم PSO در پایتون Python

  1. programstore

    نظرات و پیشنهادات خود را با ما در میان بگذارید.

دیدگاه خود را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

این سایت از اکیسمت برای کاهش هرزنامه استفاده می کند. بیاموزید که چگونه اطلاعات دیدگاه های شما پردازش می‌شوند.

اطلاعات فروشنده