تخفیف نوروزی پی استور
هزینه سفارش:
۲۵۹,۰۰۰ تومان قیمت اصلی: ۲۵۹,۰۰۰ تومان بود.۱۰۳,۶۰۰ تومانقیمت فعلی: ۱۰۳,۶۰۰ تومان.
این سورس کد به زبان پایتون Python برای الگوریتم بهینه سازی الگوریتم JAYA در پایتون Python کد نویسی شده است. نام این الگوریتم از زبان سانسکریت برگرفته شده است و به معنای پیروزی یا victory میباشد. الگوریتم JAYA فرآیند سادهای برای تعیین جوابهای احتمالی خوب دارد و آن هم نزدیک شدن به جوابهای خوب Best و دور شدن از جوابهای بد worst است.
در این بخش سورس کد الگوریتم پیروزی JAYA در پایتون Python قرار گرفته شده است. این سورس کد به زبان پایتون Python برای الگوریتم بهینه سازی الگوریتم JAYA در پایتون Python کد نویسی شده است. نام این الگوریتم از زبان سانسکریت برگرفته شده است و به معنای پیروزی یا victory میباشد. الگوریتم JAYA فرآیند سادهای برای تعیین جوابهای احتمالی خوب دارد و آن هم نزدیک شدن به جوابهای خوب Best و دور شدن از جوابهای بد worst است.
در این قسمت سورس کد الگوریتم JAYA در پایتون Python آماده شده است این سورس کد شامل ۲ فایل میباشد JAYAکه عبارتند از:
import numpy import math # define the function blocks def prod( it ): p= 1 for n in it: p *= n return p def Ufun(x,a,k,m): y=k*((x-a)**m)*(x>a)+k*((-x-a)**m)*(x<(-a)); return y def F1(x): s=numpy.sum(x**2); return s def F2(x): o=sum(abs(x))+prod(abs(x)); return o; def F3(x): dim=len(x)+1; o=0; for i in range(1,dim): o=o+(numpy.sum(x[0:i]))**2; return o; def F4(x): o=max(abs(x)); return o; def F5(x): dim=len(x); o=numpy.sum(100*(x[1:dim]-(x[0:dim-1]**2))**2+(x[0:dim-1]-1)**2); return o; def F6(x): o=numpy.sum(abs((x+.5))**2); return o; def F7(x): dim=len(x); w=[i for i in range(len(x))] for i in range(0,dim): w[i]=i+1; o=numpy.sum(w*(x**4))+numpy.random.uniform(0,1); return o; def F8(x): o=sum(-x*(numpy.sin(numpy.sqrt(abs(x))))); return o; def F9(x): dim=len(x); o=numpy.sum(x**2-10*numpy.cos(2*math.pi*x))+10*dim; return o; def F10(x): dim=len(x); o=-20*numpy.exp(-.2*numpy.sqrt(numpy.sum(x**2)/dim))-numpy.exp(numpy.sum(numpy.cos(2*math.pi*x))/dim)+20+numpy.exp(1); return o; def F11(x): dim=len(x); w=[i for i in range(len(x))] w=[i+1 for i in w]; o=numpy.sum(x**2)/4000-prod(numpy.cos(x/numpy.sqrt(w)))+1; return o; def F12(x): dim=len(x); o=(math.pi/dim)*(10*((numpy.sin(math.pi*(1+(x[0]+1)/4)))**2)+numpy.sum((((x[1:dim-1]+1)/4)**2)*(1+10*((numpy.sin(math.pi*(1+(x[1:dim-1]+1)/4))))**2))+((x[dim-1]+1)/4)**2)+numpy.sum(Ufun(x,10,100,4)); return o; def F13(x): dim=len(x); o=.1*((numpy.sin(3*math.pi*x[1]))**2+sum((x[0:dim-2]-1)**2*(1+(numpy.sin(3*math.pi*x[1:dim-1]))**2))+ ((x[dim-1]-1)**2)*(1+(numpy.sin(2*math.pi*x[dim-1]))**2))+numpy.sum(Ufun(x,5,100,4)); return o; def F14(x): aS=[[-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32,-32,-16,0,16,32],[-32,-32,-32,-32,-32,-16,-16,-16,-16,-16,0,0,0,0,0,16,16,16,16,16,32,32,32,32,32]]; aS=numpy.asarray(aS); bS = numpy.zeros(25) v=numpy.matrix(x) for i in range(0,25): H=v-aS[:,i]; bS[i]=numpy.sum((numpy.power(H,6))); w=[i for i in range(25)] for i in range(0,24): w[i]=i+1; o=((1./500)+numpy.sum(1./(w+bS)))**(-1); return o; def F15(L): aK=[.1957,.1947,.1735,.16,.0844,.0627,.0456,.0342,.0323,.0235,.0246]; bK=[.25,.5,1,2,4,6,8,10,12,14,16]; aK=numpy.asarray(aK); bK=numpy.asarray(bK); bK = 1/bK; fit=numpy.sum((aK-((L[0]*(bK**2+L[1]*bK))/(bK**2+L[2]*bK+L[3])))**2); return fit def F16(L): o=4*(L[0]**2)-2.1*(L[0]**4)+(L[0]**6)/3+L[0]*L[1]-4*(L[1]**2)+4*(L[1]**4); return o def F17(L): o=(L[1]-(L[0]**2)*5.1/(4*(numpy.pi**2))+5/numpy.pi*L[0]-6)**2+10*(1-1/(8*numpy.pi))*numpy.cos(L[0])+10; return o def F18(L): o=(1+(L[0]+L[1]+1)**2*(19-14*L[0]+3*(L[0]**2)-14*L[1]+6*L[0]*L[1]+3*L[1]**2))*(30+(2*L[0]-3*L[1])**2*(18-32*L[0]+12*(L[0]**2)+48*L[1]-36*L[0]*L[1]+27*(L[1]**2))); return o # map the inputs to the function blocks def F19(L): aH=[[3,10,30],[.1,10,35],[3,10,30],[.1,10,35]]; aH=numpy.asarray(aH); cH=[1,1.2,3,3.2]; cH=numpy.asarray(cH); pH=[[.3689,.117,.2673],[.4699,.4387,.747],[.1091,.8732,.5547],[.03815,.5743,.8828]]; pH=numpy.asarray(pH); o=0; for i in range(0,4): o=o-cH[i]*numpy.exp(-(numpy.sum(aH[i,:]*((L-pH[i,:])**2)))); return o def F20(L): aH=[[10,3,17,3.5,1.7,8],[.05,10,17,.1,8,14],[3,3.5,1.7,10,17,8],[17,8,.05,10,.1,14]]; aH=numpy.asarray(aH); cH=[1,1.2,3,3.2]; cH=numpy.asarray(cH); pH=[[.1312,.1696,.5569,.0124,.8283,.5886],[.2329,.4135,.8307,.3736,.1004,.9991],[.2348,.1415,.3522,.2883,.3047,.6650],[.4047,.8828,.8732,.5743,.1091,.0381]]; pH=numpy.asarray(pH); o=0; for i in range(0,4): o=o-cH[i]*numpy.exp(-(numpy.sum(aH[i,:]*((L-pH[i,:])**2)))); return o def F21(L): aSH=[[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]]; cSH=[.1,.2,.2,.4,.4,.6,.3,.7,.5,.5]; aSH=numpy.asarray(aSH); cSH=numpy.asarray(cSH); fit=0; for i in range(0,4): v=numpy.matrix(L-aSH[i,:]) fit=fit-((v)*(v.T)+cSH[i])**(-1); o=fit.item(0); return o def F22(L): aSH=[[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]]; cSH=[.1,.2,.2,.4,.4,.6,.3,.7,.5,.5]; aSH=numpy.asarray(aSH); cSH=numpy.asarray(cSH); fit=0; for i in range(0,6): v=numpy.matrix(L-aSH[i,:]) fit=fit-((v)*(v.T)+cSH[i])**(-1); o=fit.item(0); return o def F23(L): aSH=[[4,4,4,4],[1,1,1,1],[8,8,8,8],[6,6,6,6],[3,7,3,7],[2,9,2,9],[5,5,3,3],[8,1,8,1],[6,2,6,2],[7,3.6,7,3.6]]; cSH=[.1,.2,.2,.4,.4,.6,.3,.7,.5,.5]; aSH=numpy.asarray(aSH); cSH=numpy.asarray(cSH); fit=0; for i in range(0,9): v=numpy.matrix(L-aSH[i,:]) fit=fit-((v)*(v.T)+cSH[i])**(-1); o=fit.item(0); return o
قبل از اجرای سورس کدالگوریتم پیروزی JAYA در پایتون Python حتماً از نصب پکیجهای مورد استفاده در این سورس کد در Python خود مطمئن شوید پکیجهای استفاده شده در این سورس کد numpy و matplotlib میباشد که اولی پکیج مربوط به استفاده از آرایهها و ماتریسها در پایتون و دومی مربوط به عملیاتهای نموداری و Plot گرفتن میباشد. پیشنهاد ما نصب اسپایدر (Spyder (Python 3.7 میباشد که هم پایتون و پکیجهای مختلف و هم IDEهای مختلفی را همراه با امکان آپدیتشان نصب میکند.
الگوریتم پیروزی JAYA در پایتون Python عنوان اثری است که در این پست به آن پرداخته شده است. این اثر در پایتون و با IDE اسپایدر (Spyder (Python 3.8 نوشته شده و بصورت کامل توسط گروه پشتیبانی پی استور تست و اجرا شده است. این الگوریتم دارای نشان تضمین کیفیت پی استور میباشد. برای دانلود آن را خریداری کنید.
تیم برنامه نویسی پی استور یکی از اولین گروههای تشکیل شده در مجموعه آموزشی پی استور میباشد. این تیم از اساتید مجرب و فارغ التحصیلان رشتههای فنی و مهندسی تشکیل شده که در زمینههای مختلف برنامهنویسی و تهیه سورس کد فعال هستند.
نام اثر: | الگوریتم پیروزی JAYA در پایتون Python |
نوع اثر: | سورس کد |
برنامهنویس: | تیم برنامهنویسی پیاستور |
زبان برنامه نویسی: | پایتون |
ویژگی: | قابل دانلود و ویرایش |
توجه: کیفیت این محصول توسط پی استور تضمین شده و در صورت عدم رضایت از محصول، به انتخاب شما:
هزینه سفارش:
۲۵۹,۰۰۰ تومان قیمت اصلی: ۲۵۹,۰۰۰ تومان بود.۱۰۳,۶۰۰ تومانقیمت فعلی: ۱۰۳,۶۰۰ تومان.
نظرات
eli
از این کد داخل متلب هم میشه استفاده کرد؟
فرشید
سلام. برای این سورس کد فیلم آموزشی هم میتونم داشته باشم؟
فاطمه اسماعیلی
سلام وقت بخیر
لطفا درخواست خود را از طریق راه های ارتباطی ارسال بفرمایید.
مدیریت و پشتیبانی
نظرات و پیشنهادات خود را با در میان بگذارید.