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Abstract- In a number of engineering problems, e.g. in
geotechnics, petroleum engineering, etc., intervals of
measured series data (signals) are to be attributed a
class maintaining the constraint of contiguity and
standard classification methods could be inadequate.
Classification in this case needs involvement of an expert
who observes the magnitude and trends of the signals in
addition to any a priori information that might be
available. In this paper an approach for automating this
classification procedure is presented. Firstly, a
segmentation algorithm is applied to segment the
measured signals. Secondly, the salient features of these
segments are extracted using boundary energy method.
Based on the measured data and extracted features
classifiers to assign classes to the segments are built;
they employ Decision Trees, ANNs and Support Vector
Machines. The methodology was tested for classifying
sub-surface soil using measured data from Cone
Penetration Testing and satisfactory results were
obtained.

I. INTRODUCTION

In a number of engineering problems there is a necessity
to classify contiguous intervals (segments) of series data
(signals). Series data has an additional index variable
(distance or time) associated with each data value. Standard
classification algorithms in these situations are often
inadequate due to the additional contiguity constraint.
Examples from the following domains can be mentioned:
classification of sub-soil layers using Cone Penetration
Testing [2] [7], well-log analysis in petroleum engineering
[9], palaeoecology [4], etc. In these cases measurements are
taken from a vertical bore or with a test apparatus which is
pushed down the earth and it is required that the
stratigraphical information is preserved in the classification.
The problem is solved in two phases: firstly, a segmentation
algorithm is used to cluster contiguous blocks of instances
and secondly, these segments are classified by domain-
experts.
We investigated the problem with a specific interest of

automating classification of soil layers from measured data.
In civil engineering it is a prerequisite to know the soil
classes up to some depths prior to any construction. The
direct method to identify the soil classes by drilling
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boreholes and testing soil samples is very expensive. A
cheaper alternative is the so-called Cone Penetration
Testing (CPT) which is one of the most popular soil
investigation methods [2]. In CPT, a metallic cone is pushed
into the soil and an indication of the in-situ soil strength is
obtained by measuring the force needed to let it advance at
a constant rate. A CPT recording is a quasi-continuous
picture of the subsurface at the test location. It contains the
vertical variations of the mechanical characteristics of the
subsoil. These variations in turn indicate variations in
geological layers and their properties. During a test, two
primary signals are recorded: 1) the cone tip resistance
stress (qc), 2) the frictional stress (f1) which is used to derive
the more widely used friction ratio Rf = f *1 00Iq.
Additionally, information is available from borehole drilling
in the proximity of CPTs typically with the frequency of I
borehole for 10 CPTs. Observing the variations of q, and Rf
(Fig.1) and using the nearby borehole information, an
expert firstly segments the logs i.e., finds boundaries of
layers (class boundaries), and secondly, using the domain
knowledge assigns a soil class C, to each segment (where i
=, 2, ..., I and I = number of classes).
In practice a manual segmentation and classification

procedure is followed. This procedure requires expertise,
and is expensive, time consuming, subjective and not
completely reproducible. The challenge is to automate this
procedure. In order to achieve this a new algorithm called
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Fig. 1. Variation of cone tip resistance (q,) (a) and friction ratio (Rf) (b)
along depth of a Cone Penetration Testing which is used to segment the

logs and assign classes to the segments (c).
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CONCC (CONstraint Clustering and Classification) was
developed. It can be used in automatic classification with
the constraint of contiguity and includes the following two
steps:
- Segmentation: to find J segments of data from a

single series data (e.g. CPT);
- Classification: to build a classifier to assign classes to

these segments; it is built using measured data and
extracted features from segments from a number of
series data from a region and trained with classes
labelled by experts.

Segmentation of series data has been addressed in [1], and
is briefly reported here. This paper presents classification of
the found segments using three Machine Learning (ML)
methods: Decision Tress (DT), ANNs and Support Vector
Machines (SVM). Application of ML in geostatistical
problems is quite limited, some applications are reported in
[1] [8] [10] [201.

II. SEGMENTATION OF SERIES DATA

Segmentation can be defined as the clustering of series
data where the constraint of contiguity has to be maintained.
If the measured instances are labelled 1, 2,..., N according
to depth, and J segments are sought, then J- 1 'markers' are
needed in some of the N-I gaps between pairs of
neighbouring measurements to produce J segments of
contiguous block of data. The number of possible partitions
in this case is considerably smaller than the unconstraint
clustering case. Accordingly, most of the available
algorithms employ the exhaustive or semi-exhaustive search
within this reduced search space.
A segment gj to be identified is defined as:

gj {{XI.., XIK}, .,{Xl ..,X l, K .},.*.-{Xnj 1,..,Xj,K}}j (1)

where xi, k E T" and represents the measured data;
1= 1, 2,..., n1, where nj is the number of instances in

segment gj;
k = 1, 2, ..., K, where K is the number of dimensions

(signals);
j = 1, 2. ...., J, where J is the number of segments.

After segmentation the classification problem is solved
when segments are attributed to classes:

gj ->C

(computationally demanding) method where the solution is
obtained recursively [61; ii) a split moving window of fixed
width that is moved along the data sequence and a marker is
placed at points where a substantial change in some
statistical criteria is observed [16].
The CONCC algorithm addresses the shortcomings of the

existing segmentation algorithms. It uses fuzzy logic to
address the imprecision in the measured data and uses a
particular threshold-based distance measure between
instances and segment centres. Initial tests of the CONCC
algorithm were performed and the satisfactory performance
was achieved [1]. This paper presents the classification of
the segments found by the CONCC algorithm. However,
segments found by any other suitable segmentation
algorithm, including the manual segmentation procedure of
experts, can be classified using the presented approach as
well.

III. FEATURE EXTRACTION USING BOUNDARY ENERGY

After the segments are found the following task is to
assign classes to the segments. However, for different
locations the mapping (2) could be different due to the
spatial variability. When data from several test locations are
combined an overlap of instances of different classes is
usually observed (Fig. 2). The spatial variability has several
reasons such as site-specific conditions, location and depth,
measuring instruments, etc. To solve the problem it needs to
be brought to a higher dimension by bringing in additional
features so that a partition ofthe input space is possible by a
classifier for assigning a class to that subset of inputs.
In engineering, experts use subjective criteria, so the

automated classification methods should select appropriate
features and be compatible with experts. During this
research several experts in geology were interviewed and
their manual classification procedures were recorded. It was
observed that the experts assign high importance to the
shape, in addition to the magnitude of the data. This led us
to conclude that in automating the classification procedure
experts' perception about the shape of signals needed to be
parameterised.

Fig. 2. Scatters ofthe measured data from several CPTs in the cone tip
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Review of methods for segmentation (constraint

clustering) is given in [15] and [4]. The reported methods
partition a dataset into J groups by minimising the criteria
of within-group sum of squared deviations from the
segment mean, i.e. dispersion. The reported methods follow
these approaches: i) a dynamic programming
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Shapes of signals can be represented using multi-scale
transforms such as Fourier transform, w-representation
using Marr wavelet and Morlet wavelet, Gabor transform
etc. [3]. These representations can be used to derive shape
measures using multi-scale energy methods such as
boundary energy, multi-scale wavelet energy, etc. In this
research the boundary energy has been used in
parameterising the shape effects.

A. Boundary energy

Boundary energy is defined as the amount of energy
required to modify the shape of a contour to its lowest
energy level (a circle), with the same perimeter as the
original object. The concept of boundary energy originated
from the theory of elasticity and was first applied in
biological shape characterisation [19]. Since then it has
been widely used as a global shape measure for
classification of a variety of shapes. Boundary energy is
defined as follows:

B N-l
Ba k =-sYc(a, n)
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Fig. 3. Scatters of friction ratio (Rr) and the boundary energy of RJ using
data from several Cone Penetration Tests. Several clusters of instances

corresponding to classes are now more or less disjoint.
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where B, k denotes the boundary energy of a signal at scale
a along the dimension k, c is the curvature at point n, n = 1,
2,.., N; and N is the number of discrete observations. A
detailed description on boundary energy can be found in
[3].
The multi-scale dimension of boundary energy is brought

by successive low-pass filtering of a series data and by
computing boundary energy of each of these filtered series
data. Gaussian filter is the most common one and the value
of 'sigma' in the Gaussian expression is changed gradually
from low values to very high values. As a result the
curvature of a series data is computed at different sigma
values, i.e., at different analysing scales leading to a multi-
scale representation of the series data. Such a multi-scale
representation of curvature of a series data is called a
curvegram [3]. Successive low-pass filtering of a series data
with varying sigma values lead to a multi-scale
characterisation of the energy contained in the series data.
With increasing scales the small scale details of a series
data vanishes and the most important features become
prominent, which can be utilised in subsequent
classification. Boundary energy has been successfully
applied in biomedical engineering, neuroscience, and in
general, in analysing images from a diverse domain (see,
e.g., [14]) and has been recognised as an effective tool that
can be used as a global shape measure.

It is evident that computation of boundary energy depends
upon an accurate estimation of multi-scale curvature of a
series data, which for a discrete signal is not an easy task.
Commonplace computation techniques of curvature based
on finite difference methods can lead to high errors,
effectively thwarting the possibility of using boundary
energy as a shape measure. In this regard a Fourier based

in
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Fig. 4. Scatters of cone tip resistance (q,) and the boundary energy ofq,
using data from several Cone Penetration Tests. Several clusters of
instances corresponding to classes are now more or less disjoint.

curvature computation technique introduced in [3], which is
much more accurate than the traditional curvature
computation methods, has been used.
Fig. 2 shows instances from several segments taken from

a number of CPTs (K = 2) where segments were labelled by
the experts. From the fact that instances overlap it can be
concluded that partitioning of the data to build a classifier in
this space (qC-Rf) may not be possible. Fig. 3 shows R1 and
the corresponding boundary energy for these segments,
whereas Fig. 4 shows q, and the corresponding boundary
energy for these segments. Clusters corresponding to
classes are now more or less disjoint and hopefully present
a much easier problem for a classifier.

IV. CLASSIFICATION

The overall classification scheme is shown in Fig. 5 with
the particular reference to the classification of soil based on
CPT data. It can be easily amenable to classification
problems of other domains (e.g. petroleum engineering) as
well. The training data may be created by segmenting
several series data by involving an expert or by using the
CONCC algorithm. The series data used in the training is
then labelled by experts. Features from the labelled data
(during training) or unlabelled data (during operation) are
extracted using boundary energy (in the FE unit). Data
preparation is carried out in the constructed feature space
(in the DP unit). The classifier (CA) consists of two units.
The pre-classification unit (PC) classifies each instance
during the testing and operational use. The compaction unit
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determines a single class (called a 'compact class') for a
segment.
Classifiers are trained using DT, ANN and SVM to learn

the following mapping from the labelled training data:
{x/ 1,B,, 1-,-2,BI.,Xl,K, BI, K} Ci (4)
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Fig. 5.The classifiera(Eq.o4)lheaurins toe classify esac insane.
During training experts are involved in preparing the training data. Once

the classifier CA is trained it replaces experts.

where I = index of instances,l I= 1, 2,...,ns andta there
number of instances in gj;
K = number of signals (dimension);
Bca k = Boundary energy at point I in dimension k for input

variable xI, k-

The classifier (Eq. 4) lea asto classify each instance.
Finally the mapping (2) is ensured by compacting the
classes of instances within a segment. This is required due
to t, deatothat frequently within a series data there could
be instances (measurements) that obviously belong to the
class C, but are within the segment co(gesponding to
another class C2 and should be attributed to the class C2.
Such points (vectors) could be the result of noise or
instrumentation errors. Such points may also appear, say in
a CPT,, due to the small inclusions of another soil class in
the otherwise predominantly homogeneous soil layer. The
heterogeneity of the natural environment (e.g., soil) is the
prime reason behind the presence of these mischievous
measurements. Such points will be called aliens. For
measurements in natural environments such as CPTs or
well-logs of petroleum engineering the aliens are observed
mostly in the proximity of another segment (i.e. another

class). However, aliens can also be observed due to various
other reasons such as instrument errors, etc. Experts ignore
these aliens and pick up the general pattern of the segment.
The compaction algorithm assigns weights to the classes
determined by the PC unit. The weights (wi) are computed
as points on a Gaussian curve with zero mean and standard
deviation = 2 (Fig. 6) and the compact class (Cp) is
determined by:

ni
Cp= wiCp/Zwi

i=l
(5)

where n1 = number of instances in a segment and Cp is the
class for the ith instance.
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Fig. 6. The variation of weight wi of an instance in relation to its position
within a segment. The compaction algorithm of the classifier multiplies the

class of each instance by wi in order to determine a single class of a
segment.

V. APPLICATION TO GEOTECHNICS

The above methodology was applied to classify soil on the
basis of CPT data. The data that has been used to build the
classifier is taken from the CPTs conducted at Nesselande, a
residential zone under development near Rotterdam, The
Netherlands. During 1996 to 2000 CPTs were conducted at
565 locations in an area of 2.5x3.5 km of Nesselande. At
about 60 locations boreholes were drilled as borehole
information is vital in determining the soil characteristics
from CPTs. The Nesselande area is underlain by extensive
peat and soft clay deposits. The Late Pleistocene and
Holocene (sand) deposits predominantly make up the upper
10 m of soil in the Nesselande area. A detailed geological
description of the area can be found in [17]. The study
undertaken by the municipality of Rotterdam aims at
finding the thickness of the soft sediments overlying
(Pleistocene) sands, the presence and geometry of the sand
bodies in the soft Holocene deposits, the hydrological
contact of these sand-bodies with the (Pleistocene) sand,
existence of peat within a few meters below the ground
surface, engineering properties of the soil layers present in
the subsurface, and their spatial distribution. Municipality
of Rotterdam has the task of determining the soil classes of
the subsurface of Nesselende using CPTs and borehole
information.
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Obtaining a proper dataset having more or less equal
representation of all the classes as well as all the
geographical regions of the site was a big problem. This is
because the manual classification procedure of experts is
time consuming and costly. Therefore, building a classifier
using a minimum amount of data was considered. In
consultation with the experts in total seven CPTs of the area
were chosen. Four CPTs were considered for training and
three CPTs for testing. Due to the scarcity of data no cross-
validation dataset was chosen. Each CPT of the testing
group is statistically comparable to a CPT of the training
group. The number of instances in training and testing were
5150 and 2830 respectively whereas the number of
segments in training and testing were 72 and 46
respectively.

A. The classification task

The requirement of details to be found in soil classes of an
area varies as per the requirement of the end users. Often it
may be enough to know the primary soil classes (sand, peat
and clay for this area). Some other times the presence of the
secondary soil classes also need to be determined. The
detennination of just the sandy or non-sandy soil types
poses an important geotechnical task. This may be due to
the reason that the end user wants to model the spatial
extent of the sand layers, or for the purpose of determining
the initial settlements from the proposed constructions, or to
study the drainage characteristics to assess the migration of
contaminants.
Based on the above discussions the following three

classification problems were contemplated:
a) binary classification, where the task of the classifier

is to determine whether the soil is sandy or not;
b) three-class classification, where the classifier has to
identify the primary soil class only (i.e. sand, clay or
peat);

c) seven-class classification, where the classifier has to
determine the appropriate class from the set of seven
classes observed in this area.

Classifiers using DT, ANN and SVM were built for the
above-mentioned three classification tasks. The experiments
were conducted with WEKA [18] for DT, Neurosolutions
and NeuralMachine for MLP ANN, and WEKA and RHUL
[13] for SVM.

B. Results and discussions

1) Binary classification: The results obtained with all the
three methods were close to each other (Table 1). The
instances with the sandy soil type were better classified by
DT and ANN, whereas, the instances of the non-sandy soil
type were better classified by SVM (with WEKA). It was
noticed that almost all erroneously classified instances were
located near the segment boundaries. Measurements near a
segment boundary are often noisy and it can be concluded

accordingly that the performance of the classifiers was
excellent.
Finally, the segment classes were determined using the

compaction algorithm. It was observed that all the segments
were correctly classified by the three methods, i.e. a
classification accuracy of 100% was reached.
2) Three-class classification: The three-class

classification problem is comparatively more difficult than
the binary classification problem mainly due to the large
overlap of the instances of the clayey soil with that of the
other two classes. The performance of the classifiers were
comparable, however, the SVM-based classifier (with
WEKA) gave slightly better results (Table 2), with ANN
and DT following closely. All the methods provided more
accurate classification of the instances from the sandy soil.
For the clayey soil the SVM-based classifier was better than
the others. All the methods provided poor results for the
peaty soil. For each classifier if the correct class was not
predicted then the predicted class was the geologically
neighbouring class.

TABLE 1. CLASSIFICATION ACCURACY OF THE BINARY CLASSIFIERS (ON
THE TEST DATASET)

Soil class % of correctly % of correctly
classified instances classified segments
DT ANN SVM DT ANN SVM

Sandy soil 99.3 100.0 96.6 100 100 100
Non-sandy soil 96.3 96.4 99.5 100 100 100

Total 97.6 98.0 97.8 100 100 100

TABLE 2. CLASSIFICATION ACCURACY OF THE THREE-CLASS CLASSIFIERS
(ON THE TEST DATASET)

Soil class % of correctly % of correctly
classified instances classified segments
DT ANN SVM DT ANN SVM

Sand 100.0 99.8 98.5 100 100 100
Clay 82.9 96.5 98.5 90.9 90.9 100
Peat 58.7 60.5 58.7 66.7 66.7 66.7
TOtal 85.6 91.0 90.7 82.6 82.6 87.0

TABLE 3. CLASSIFICATION ACCURACY OF THE SEVEN-CLASS CLASSIFIERS
(ON THE TEST DATASET)

Soil class % of correctly % of correctly
classified instances classified segments
DT ANN SVM DT ANN SVM

Silty sand 99.2 98.7 85.1 100 100 100
Clayey sand 83.3 70.8 54.2 100 100 100
Sandy clay 85.4 85.4 69.4 75 75 50

Clay 75.0 77.5 65.0 100 100 100
Humus clay 81.4 93.5 77.0 100 100 80
Clayey peat 65.1 64.6 49.7 57.1 42.9 28.6

Peat 74.1 84.0 65.4 100 100 50
Total 86.5 89.4 74.4 82.6 78.3 60.9

3) Seven-class classification: The results of the
classifiers for the seven-class classification problem are
shown in Table 3. The classifiers were very accurate for the
silty sand and clayey sand. They were moderately accurate
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for the sandy clay, clay and humous clay, but were poor for
the clayey peat. The ANN model was much better than the
others in classifying the instances of the humous clay and
peat. The sandy segments were correctly classified in all
occasions, the clayey segments were classified with the
accuracy of 3 out of 4 segments. The DT gave the best
results for the segments of the clayey peat, still the accuracy
was not high. The SVM-based classifiers gave poor results;
these results are, however, preliminary since no
optimisation of the built SVMs (of regularisation constants
and the kernels) was undertaken. For each classifier if the
correct class was not predicted then the predicted class was
the geologically neighbouring class.

VI. CONCLUSIONS

In this paper a method to classify series data where the
constraint of contiguity has to be maintained is presented.
Experiments were conducted to classify soil based on CPT
data. The main conclusions are:
- due to spatial variability of the measured parameters

classification based on the measured parameters was
not possible. Additional features were extracted by
paramterising experts' perception of the shape of a
series data using boundary energy. This novel
approach proved to be effective;

- the proposed classification scheme effectively mimics
experts' classification procedure and automates the
classification task;

- in the case-study of soil classification using CPT data
the predictive accuracy of the classifiers on the test set
even for the most complex problem was found to be
high (83%). When the correct class was not predicted
then the predicted class was a geologically
neighbouring one. For many practical situations such
accuracy of prediction was found to be sufficient by
most experts and, if to allow for this error, the
accuracy was 100%.
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