الگوریتم تکاملی تفاضلی در متلب Differential Eevolution Algorithm

سورس کد الگوریتم تکاملی تفاضلی در متلب عنوان موضوعی است که در این پست به آن پرداخته شده است. الگوریتم تکاملی تفاضلی (Differential Eevolution Algorithm) یا الگوریتم DE یک الگوریتم بهینه سازی است و مشابه اساس الگوی الگوریتم ژنتیک کار می کند.

الگوریتم تکاملی تفاضلی یا الگوریتم DE یک الگوریتم تکاملی است که اولین بار در سال 1995 توسط Rainer Storn و Kenneth Price معرفی شد. این محققان در مقاله ای تحت عنوان Differential Evolution a Practical Approach to Global Optimization نشان دادند که این الگوریتم توانایی خوبی در بهینه سازی توابع غیرخطی مشتق ناپذیر دارد که به عنوان روشی قدرتمند و سریع برای مسائل بهینه سازی در فضاهای پیوسته معرفی شده است.

الگوریتم تکاملی تفاضلی Differential Eevolution Algorithm

الگوریتم DE جهت غلبه بر عیب اصلی الگوریتم ژنتیک، یعنی نبود جستجوی محلی دراین الگوریتم ارائه شده است، تفاوت اصلی بین الگوریتم های ژنتیک  و الگوریتم DE در عملگر انتخاب Selection Operators است. در عملگر انتخاب الگوریتم GA ،شانس انتخاب یک جواب به عنوان یکی از والدین وابسته به مقدار شایستگی آن می باشد، اما در الگوریتم DE همه جواب ها دارای شانس مساوی جهت انتخاب شدن می باشند. یعنی شانس انتخاب شدن، وابسته به مقدار شایستگی آنها نمی باشد، پس از این که یک جواب جدید با استفاده از یک عملگر جهش mutation و عملگر crossover تولید شد، جواب جدید با مقدار قبلی مقایسه می شود و در صورت بهتر بودن جایگزین می گردد.

در الگوریتم تکاملی تفاضلی بر خلاف دیگر الگورتیم ها که اول عملگر crossover و سپس عملگر mutation انجام می شود به گونه ای که ابتدا عملگر جهش اعمال شده و سپس عملگر crossover اعمال می شود تا بدین وسیله نسل جدید ایجاد گردد. برای اعمال عملگر mutation از توزیع خاصی استفاده نمی شود بلکه طول گام جهش برابر با مقدار از فاصله میان اعضای فعلی تعیین می شود.

برای درک الگوریتم تکاملی تفاضلی توضیح کامل این الگوریتم را می توانید در همین سایت از مقاله ای کامل تحت عنوان الگوریتم تکاملی تفاضلی Differential Eevolution Algorithm مطالعه فرمایید.

سورس کد الگوریتم تکاملی تفاضلی در متلب

سورس کد الگوریتم تکاملی تفاضلی در GUI Matlab شامل توابعی است که تابع Main در واقع کد اصلی برنامه می باشد و بقیه فراخوانی ها از آنجا انجام می شود. همچنین این برنامه با 6 تابع تست ارائه شده است. توابع تست برای ارزیابی الگوریتم های بهینه سازی بکار می روند که در این سایت برای توضیحات بیشتر در مورد توابع تست الگوریتم های بهینه سازی مقاله ای آماده کردیم. توابع تست این پروژه عبارتند از :

  • تابع  SPHERE
  • تابع ACKLEY
  • تابع SUM SQUARES
  •  تابع ROSENBROCK
  • تابع SUM OF DIFFERENT POWERS
  • تابع ZAKHAROV

توابع زیادی برای تست عملکرد الگوریتم های بهینه سازی وجود دارد که در اینجا ما به این 6 تابع اکتفا کرده ایم. همچنین لازم به ذکر است که برای اجرای الگوریتم بهینه سازی روی مسئله مورد نظر تابع هزینه یا Cost Function آن تغییر خواهد کرد و بقیه الگوریتم دست نخورده باقی می ماند بنابراین برای اجرای الگوریتم تکاملی تفاضلی در متلب برای بهینه سازی مسئله خودتان تابع هزینه خود را بر اساس پارامترهای مسئله خود تعریف کنید.

قسمتی از سورس کد

تصویر خروجی محصول

الگوریتم تکاملی تفاضلی در متلب

ویدئوی معرفی محصول

درباره محصول

سورس کد الگوریتم تکاملی تفاضلی در متلب در محیط Matlab 2014b نوشته و اجرا شده است این سورس کد توسط تیم پشتیبانی پی استور تست و اجرا شده است. کیفیت محصول توسط پی استور تضمین می شود و محصول دارای نشان تضمین کیفیت پی استور می باشد. برای دانلود محصول آن را خریداری فرمایید به محض خرید لینک دانلود در دسترس خواهد بود.

1 دیدگاه برای الگوریتم تکاملی تفاضلی در متلب

  1. امتیاز 5 از 5

    programstore

    نظرات و پیشنهادات خود را با ما درمیان بگذارید.

دیدگاه خود را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

این سایت از اکیسمت برای کاهش هرزنامه استفاده می کند. بیاموزید که چگونه اطلاعات دیدگاه های شما پردازش می‌شوند.

اطلاعات فروشنده