مجموعه آموزشی پی استور - https://programstore.ir

الگوریتم های یادگیری ماشین

یادگیری ماشین به عنوان یکی از شاخه‌های وسیع و پرکاربرد هوش مصنوعی، یادگیری ماشین (Machine learning) به تنظیم و اکتشاف شیوه‌ها و الگوریتم‌هایی می‌پردازد که بر اساس آنها رایانه‌ها و سامانه‌ها توانایی تعلم و یادگیری پیدا می‌کنند.این شاخه به این معنا است که ماشین بتواند برنامه، ساختار یا داده‌‏هایش را بر اساس ورودی‏‌ها یا در پاسخ به اطلاعات خارجی، به نحوی تغییر دهد که رفتارش به آن چه از او انتظار می‌‏رود نزدیک‏‌تر شود، به عبارت دیگر می‌توان گفت یعنی قدرت تجزیه تحلیل داشته باشد.

وظیفه ی اساسی برای داده کاوی

اگر متن های قدیمی و کلاسیک داده کاوی را مطالعه کرده باشید، در آن چهار وظیفه ی اساسی برای داده کاوی برشمرده شده است

در تقسیم بندی دیگر، تمام الگوریتم های داده کاوی و یادگیری ماشین به سه دسته کلی:

تقسیم بندی یادگیری ماشین

هر کدام از این تقسیم بندی ها الگوریتم ها و دنیای خودش را دارد ولی به طور کلی، یادگیری با ناظر با استفاده از برچسب یا label داده ها، برچسب داده های مشاهده نشده را تشخیص می دهد ولی در یادگیری بدون ناظر معمولا برچسب داده ها موجود نیست. یادگیری نیمه ناظر هم چیزی بین این دوتاست که معمولا حالت استاد-شاگردی در آن شبیه سازی می شود و استاد تنها در بعضی مواقع خاص تقلب هایی به شاگردش که الگوریتم باشد، می رساند. هر کدام از این سه حالت کلی، دنیای خاص خودشان را دارند. به طور مثال خود یادگیری با ناظر در یک دسته بندی به زیربخش های زیر می تواند تفکیک شود.

یادگیری با ناظر

کاربردهای یادگیری ماشین

تاکنون کاربردهای بسیار زیادی از هوش مصنوعی و یادگیری ماشین را در زندگی روزمره تجربه کرده‌ایم. سرویس‌های ایمیل برای تشخیص اسپم از الگوریتم‌های یادگیری ماشین استفاده می‌کنند. سیستم‌های پیشنهادگر، مرتب‌سازی نتایج موتورهای جستجو، تشخیص چهره خندان برای عکاسی خودکار، همگی نمونه‌های دیگری از کاربردهای یادگیری ماشین هستند.